An essential role for Drosophila hus1 in somatic and meiotic DNA damage responses.

نویسندگان

  • Uri Abdu
  • Martha Klovstad
  • Veronika Butin-Israeli
  • Anna Bakhrat
  • Trudi Schüpbach
چکیده

The checkpoint proteins Rad9, Rad1 and Hus1 form a clamp-like complex which plays a central role in the DNA-damage-induced checkpoint response. Here we address the function of the 9-1-1 complex in Drosophila. We decided to focus our analysis on the meiotic and somatic requirements of hus1. For that purpose, we created a null allele of hus1 by imprecise excision of a P element found 2 kb from the 3' of the hus1 gene. We found that hus1 mutant flies are viable, but the females are sterile. We determined that hus1 mutant flies are sensitive to hydroxyurea and methyl methanesulfonate but not to X-rays, suggesting that hus1 is required for the activation of an S-phase checkpoint. We also found that hus1 is not required for the G2-M checkpoint and for post-irradiation induction of apoptosis. We subsequently studied the role of hus1 in activation of the meiotic checkpoint and found that the hus1 mutation suppresses the dorsal-ventral pattering defects caused by mutants in DNA repair enzymes. Interestingly, we found that the hus1 mutant exhibits similar oocyte nuclear defects as those produced by mutations in DNA repair enzymes. These results demonstrate that hus1 is essential for the activation of the meiotic checkpoint and that hus1 is also required for the organization of the oocyte DNA, a function that might be independent of the meiotic checkpoint.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conditional Inactivation of the DNA Damage Response Gene Hus1 in Mouse Testis Reveals Separable Roles for Components of the RAD9-RAD1-HUS1 Complex in Meiotic Chromosome Maintenance

The RAD9-RAD1-HUS1 (9-1-1) complex is a heterotrimeric PCNA-like clamp that responds to DNA damage in somatic cells by promoting DNA repair as well as ATR-dependent DNA damage checkpoint signaling. In yeast, worms, and flies, the 9-1-1 complex is also required for meiotic checkpoint function and efficient completion of meiotic recombination; however, since Rad9, Rad1, and Hus1 are essential gen...

متن کامل

The Drosophila hus1 gene is required for homologous recombination repair during meiosis

The checkpoint proteins, Rad9, Rad1, and Hus1 (9-1-1), form a complex which plays a central role in the DNA damage-induced checkpoint response. Previously, we demonstrated that Drosophilahus1 is essential for activation of the meiotic checkpoint elicited in double-strand DNA break (DSB) repair enzyme mutants. The hus1 mutant exhibits similar oocyte nuclear defects as those produced by mutations...

متن کامل

An essential role of DmRad51/SpnA in DNA repair and meiotic checkpoint control.

Rad51 is a conserved protein essential for recombinational repair of double-stranded DNA breaks (DSBs) in somatic cells and during meiosis in germ cells. Yeast Rad51 mutants are viable but show meiosis defects. In the mouse, RAD51 deletions cause early embryonic death, suggesting that in higher eukaryotes Rad51 is required for viability. Here we report the identification of SpnA as the Drosophi...

متن کامل

Critical role for mouse Hus1 in an S-phase DNA damage cell cycle checkpoint.

Mouse Hus1 encodes an evolutionarily conserved DNA damage response protein. In this study we examined how targeted deletion of Hus1 affects cell cycle checkpoint responses to genotoxic stress. Unlike hus1(-) fission yeast (Schizosaccharomyces pombe) cells, which are defective for the G(2)/M DNA damage checkpoint, Hus1-null mouse cells did not inappropriately enter mitosis following genotoxin tr...

متن کامل

Localization of the Drosophila Rad9 Protein to the Nuclear Membrane Is Regulated by the C-Terminal Region and Is Affected in the Meiotic Checkpoint

Rad9, Rad1, and Hus1 (9-1-1) are part of the DNA integrity checkpoint control system. It was shown previously that the C-terminal end of the human Rad9 protein, which contains a nuclear localization sequence (NLS) nearby, is critical for the nuclear transport of Rad1 and Hus1. In this study, we show that in Drosophila, Hus1 is found in the cytoplasm, Rad1 is found throughout the entire cell and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 120 Pt 6  شماره 

صفحات  -

تاریخ انتشار 2007